LA SPETTROSCOPIA ATOMICA

Le radiazioni dello spettro differiscono per la lunghezza d'onda e per l'energia.

SPETTRO DI ASSORBIMENTO: radiazioni assorbite da un sistema atomico o molecolare su cui incide un fascio di radiazioni elettromagnetiche.

SPETTRO DI EMISSIONE: radiazioni emesse da un sistema atomico o molecolare eccitato da una forma di energia.

Lo spettro elettromagnetico:

onde radio		microonde	infrarosso	vis	ib.	ultraviol.	raggi X	raggi γ
λ (m)	1	10	-3 8.	10 ⁻⁷	4.1	0^{-7} 10	-8 10	0-12
E (J mol ⁻¹)	10-1	10	r^2 1	0^{7}	3.10	0^7 10	7 10)11

Radiazioni elettromagnetiche nel visibile:

I.R.	rosso	arancio	giallo	verde	blu	violetto	U.V.
λ (nm) 80	0 640	600	575	1 490	450	40	0
E (eV) 1.	55 1.94	4 2.0	7 2.1	6 2.53			10

FREQUENZA: $\mathbf{v} = \mathbf{c} / \lambda$ (c = velocità della luce); $\mathbf{v} = \text{frequenza}$ in numeri d'onda = 1 / λ

QUANTIZZAZIONE DELL'ENERGIA DI PLANCK (1900): la radiazione elettromagnetica emessa o assorbita da un corpo è costituita da una serie di QUANTI o FOTONI, ognuno dei quali ha l'energia $\mathbf{E} = \mathbf{h} \mathbf{v}$ (con $\mathbf{h} = 6.62 \cdot 10^{-34}$ J s).

RELAZIONE DI RYDBERG: le lunghezze d'onda delle righe dello spettro dell'idrogeno sono: $1/\lambda = \Re_H (1/n_1^2 - 1/n_2^2)$

SERIE DI BALMER: serie spettrale dell'idrogeno atomico che cade nel visibile e nell'ultravioletto $(n_1 = 2)$.